時間:2023-07-07 16:11:11
序論:在您撰寫初中數學思想方法的重要性時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
所謂數學方法指在數學中提出問題、解決問題(包括數學內部問題和實際問題)過程中,所采用的各種方式、手段、途徑等。初中學生應掌握的數學方法有配方法、換元法、待定系數法、參數法、構造法、特殊值法等。
數學思想和數學方法是緊密聯系的,強調指導思想時,稱數學思想,強調操作過程時,稱數學方法。
一、初中生數學思想方法培養的重要性
從課程標準來看,九年制義務教育數學課程標準已明確地把數學思想方法納入了基礎知識的范疇。數學基礎知識是指:數學中的概念、性質、法則、公式、公理以及由其內容反映出來的數學思想方法。中學生數學內容包括數學知識與數學思想方法。數學思想方法產生數學知識,數學知識又蘊藏著思想方法,這樣有利于揭示知識的精神實質,有利于提高學生的整體素質與數學素養。
從教育的角度來看,數學思想方法比數學知識更為重要,這是因為:數學知識是定型的,靜態的,而思想方法則是發展的,動態的,知識的記憶是暫時的,思想方法的掌握是永久的,知識只能使學生受益于一時,思想方法將使學生受益于終生。增強數學思想方法的培養比知識的傳授更為重要,數學思想方法的掌握對任何實際問題的解決都是有利的。因此,數學教學必須重視數學思想方法的教學。
實踐證明,培養初中生的數學思想方法,能使學生的認知結構不斷地完善和發展,使學生將已有的思想方法運用在學習新知識的過程中,能夠把復雜問題轉化為簡單問題來解決,提高學習效益,提高學生分析問題和解決問題的能力。目前,數形結合思想、分類討論思想、方程與函數思想是各地試卷考查的重點,因此,也應注重初中生數學思想方法的培養,考查學生的數學思想方法是考查學生能力的必由之路。
二、初中主要的數學思想方法
初中數學中蘊含的數學思想方法很多,最基本最主要的有:轉化的思想方法,數形結合的思想方法,分類討論的思想方法,函數與方程的思想方法等。
1.對應的思想和方法。在初一代數入門教學中,有代數式求值的計算題,通過計算發現:代數式的值是由代數式里字母的取值所決定的,字母的不同取值可得不同的計算結果。這里字母的取值與代數式的值之間就建立了一種對應關系,再如實數與數軸上的點,有序實數對與坐標平面內的點都存在對應關系……在進行此類教學設計時,應注意滲透對應的思想,這樣既有助于培養學生用變化的觀點看問題,又助于培養學生的函數觀念。
2.數形結合的思想和方法。數形結合思想是指將數(量)與(圖)形結合起來進行分析、研究、解決問題的一種思維策略。著名數學家華羅庚先生說:“數與形本是相倚依,怎能分作兩邊飛,數缺形時少直覺,形少數時難入微,數形結合百般好,隔離分家萬事休?!边@充分說明了數形結合思想在數學研究和數學應用中的重要性。
3.整體的思想和方法。整體思想就是考慮數學問題時,不是著眼于它的局部特征,而是把注意和和著眼點放在問題的整體結構上,通過對其全面深刻的觀察,從宏觀整體上認識問題的實質,把一些彼此獨立但實質上又相互緊密聯系著的量作為整體來處理的思想方法。整體思想在處理數學問題時,有廣泛的應用。
4.分類的思想和方法。教材中進行分類的實例比較多,如有理數、實數、三角形、四邊形等分類的教學不僅可以使學生明確分類的重要性:一是使有關的概念系統化、完整化;二是使被分概念的外延更清楚、更深刻、更具體,并且還能使學生掌握分數的要點方法:
(1)分類是按一定的標準進行的,分類的標準不同,分類的結果也不相同;
(2)要注意分類的結果既無遺漏,也不能交叉重復;
(3)分類要逐級逐次地進行,不能越級化分。
5.類比聯想的思想和方法。數學教學設計在考慮某些問題時常根據事物間的相似點提出假設和猜想,從而把已知事物的屬性類比推廣到類似的新事物中去,促進發現新結論。教學中由于提供了思維發生的背景材料,既活躍了課堂氣氛,又有利于在和諧、輕松的氛圍中完成新知識的學習。
6.逆向思維的方法。所謂逆向思維就是把問題倒過來或從問題的反面思考或逆用某些數學公式、法則解決問題。加強逆向思維的訓練,可以培養學生思維的靈活性和發散性,使學生掌握的數學知識得到有效的遷移。
7.化歸與轉化的思想和方法?;瘹w意識是指在解決問題的過程中,對問題進行轉化,使之成為簡單、熟知問題的基本解題模式,它是使一種數學對象在一定條件下轉化為另一種數學對象的思想和方法。其核心就是將有等解決的問題轉化為已有明確解決程序的問題,以便利用已有的理論、技術來加以處理,從而培養學生用聯系的、發展的、運動變化的觀點觀察事物、認識問題。
三、數學方法的培養策略
(一)認真鉆研教材,充分發掘教材中蘊含的數學思想和方法
我們在備課時要認真鉆研教材,充分發掘提煉在教材中的數學思想和方法,并弄清每一章節主要體現了哪些數學思想,運用了什么數學方法,做到心中有數。例如平面幾何圓這一章就是用分類和聯系的思想把全章分成;圓的有關性質;直線和圓的位置關系;圓和圓的位置關系;正多邊形和圓四大類,在根據不同的類型研究各自圖形的性質和判定,此外還要掌握四點共圓的方法,把直線形的問題轉化成圓的問題,再歸納在四大類中分別運用有關性質加以解決。再如一元二次方程這一章,內容豐富,方法多樣,蘊含著轉化的思想,把未知轉化為已知,把高次方程轉化為低次方程,把多元方程轉化為一元方程,把無理方程轉化為有理方程,把實際問題轉化為數學問題等。
(二)提高認識,把數學思想和方法的數學納入教學目的
數學思想、方法的數學是數基礎知識教學的重要組成部分,為了使數學思想、方法的教學落到實處,首先要從思想上提高對數學思想、方法教學的重要性的認識,進而把數學思想、方法的教學納入教學目的中去,并且具體落實在每節課的教學目的中。
(三)結合教材內容,加強數學思想和方法的滲透、解釋和歸納
關鍵詞 初中數學教育;數學思想;數學教育;教育方法
初中階段的教育尤其是數學教育的重點和難點在于數學思想方法和數學思維方式的培養,良好的數學思想和數學思維對于初中階段數學的學習可以說是至關重要的。隨著社會的發展,初中階段的教育也越來越受到廣大家長以及教師的重視,同時初中數學的教學目標、教學內容、教學方法等一系列的問題也都在隨之不斷的變革。在這樣的社會大背景之下,我們更有責任和義務去深入的研究初中數學常用思想方法,不斷的深思其重要性,從而為我們社會的初中數學教育貢獻自己的一份力量。
一、數學思想方法和數學思維
數學思想和方法,其實就是我們平時所說的數學學科本身的一些客觀存在的“公式、定理、原理、數學符號”等,這些都是我們用來解決實際數學問題的最基本的工具。而數學思維則更多的是一種主觀性的存在,是一種思考的方式的,當我們看到眼前的事物時,能將看到的現象,用數字、符號等數學語言描述出來,然后運用理性的思考方式找出各個事物之間存在的關系和規律,最終使問題得到解決。
雖然在數學教學理論上各種數學思想方式有著各自明確的定義和概念,但是在實際的初中數學教學中,教師的教學中一般是各種數學思想方法和思維方式相互的融合貫通,不再去刻意的追求某一種具體的數學思維或是數學思想方法,從而加強了學生在解決實際數學問題時的各種綜合能力,使得學生能夠獨立的運用已經掌握的各種數學思想方法來看待問題,用獨特的數學思維去解構數學問題,全面增強解決問題的實際能力。筆者以為,這也是初中數學教育的本質所在。
二、常用數學思想方法的研究
就我國現階段初中數學教育來說,在當下的初中數學教學中采用最多的數學思想方法主要有:數形結合的思想方法、分類討論的思想方法、化歸思想方法、整體思考的思想方法等等。這幾種數學思想方法也是初中數學教學中運用最多的,因此我們有必要對其進行深入的研究。
1.數形結合的思想方法
所謂的“數形結合”的思想方法就是在解決一些數學問題時,對待用文字數學語言描述的數學問題,我們可以用圖形語言將它翻譯過來。由此一個“數學問題”在一定程度上就變成了一個“幾何問題”,從而完成了由抽象的思維方式到直觀可視的思維方式的轉變,在相當的程度上減小了解決數學問題的難度。對于初中階段抽象思維還不是很完善的學生來說,“數形結合”的思想方法應當是最好的解題方法。
“數形結合”的思想方法中最常用的數學符號語言其中有數軸、平面直角坐標系等?!皵敌谓Y合”思想方法就是數字和圖形相結合的解題方式,它同時包含了抽象數學數據和直觀的圖形,成功的完成了抽象思維向形象思維的過渡轉化,減小了解題的難度。
在解決實際的數學題目時,學生應該注意數量與圖形的轉化,在看待數字的同時在圖像上找到與之相稱的圖像信息,在分析具體的數學圖形時要做到見形思數,數形結合,最終完成問題的解答。
2.分類討論的思想方法
分類討論的思想方法也是初中數學教學中比較常用的一種思想方法,主要在有一定解題數量的基礎之上,對遇到的數學題目進行歸類、分析、總結,從而的出一套能夠運用在一系列相同或者相似的數學問題之上的解題理論方法,減少分析已有問題的思考量。
分類討論思想方法中的分類方式不是隨意分類的,而是具有一定嚴格的分類原則的:被分類問題的標準時統一一致的,被分類問題的解題原理是相同或是相近的,被分類題目不能重復但是也不能遺漏。正確的分類是分類討論思想方法的重點所在,因此在實際教學中,在必要的時候,教師應該進行適當的引導以保證教學方向的正確。
分類討論思想方法的一般過程是,找到明確的數學問題個體,由該數學問題個體找到能夠涵括此類問題的問題總體,完成問題的分類,在此基礎之上,深入的研究解決此類問題共同的理論依據,總結出解決此類問題的實際方法,推廣運用。
3.化歸思想方法
化歸思想方法的就是用已有的數學思想方法和數學技能把全新的數學問題轉化為已經熟悉的數學問題的過程。其實這個過程就是一種知識的解構過程,把全新的數學問題“化成”幾部分,然后運用熟知的數學思想方法重新組合、重新思考這個問題,完成看由全新到熟知的轉化。
化歸思想方法也是一種“由繁化簡”的過程,例如在方程式問題方面,運用化歸思想方法就能完成高次方程到低次方程的轉化,多元方程向二次方程甚至是一元方程等轉化。當完成了從復雜到簡單的轉化之后,數學問題就變的簡單明了,學生就能很好的處理好初中階段相對復雜相對困難題目的解答,對于學生數學能力的提升有很大的幫助。
4.整體思考的思想方法
古詩有“不知廬山真面目,只緣身在此山中”,告誡我們看待問題是不能局限于一個點或者是一個面,應該用一個整體的角度全面的去看待問題,只有這樣才不會迷惑,不會陷于其中。
同樣在解決數學問題時,我們應該汲取古人的經驗,全面的看待問題。在實際教學中,經常出現學生因看不懂題目的一個方面,死鉆牛角尖,最終無法完成問題解答的情況。每每遇到這種情況,我總是感慨,當我們在教學中不斷的給學生灌輸各種解題技巧各種數學思想方法的時候,我們忘記了告訴學生這樣去思考,怎么全面的去看待問題。
三、總結
通過對初中階段數學教育中常用的集中數學思想方法的介紹和深入的研究,我們對各種數學思想方法有了更加深入的了解和認識。在明了各種數學思想方法的基礎之上,進一步明確了各種數學思想方法的作用方式,從宏觀上更加深入的認識到各種數學思想方法在初中階段數學教育中的重要性,各種數學思想方法相互作用,相互滲透,共同構成了數學教學的理論基礎。
參考文獻:
[1]高瑞.淺談當前環境初中數學課堂中探究性學習探討[J].中國教育.2010.(6)
[2]王薇.初中數學課堂中素質教育的思考[J].新疆農墾經濟.2008.(11)
隨著新一輪課程改革的開展與推進,人們越來越重視數學思想方法的滲透。那么,在初中數學教學中有哪些思想方法需要我們去重視呢?
1.數學方法
顧名思義,這一類的思想方法與數學內容有著密切的關系,也可以認為是離開了數學知識就談不上這些方法的運用. 比如解方程中常常用到的配方法,其是通過將一元二次方程配成完全平方式,以得到一元二次方程的根的方法,其經典運用是一元二次方程求根公式的得出;再如換元法、消元法,前者是指把方程中的某個因式看成一個整體,然后用另一個變量去代替它,從而使問題得到解決,后者是指通過加減、代入等方法,使得方程中的未知數變少的方法。在復雜方程中運用這些方法可以化難為易,再如幾何中的輔助線方法也是解決許多幾何難題的靈丹妙藥。
2.普遍適用性的科學方法
例如我們數學中常用的歸納法,就有完全歸納法和不完全歸納法兩種,數學上的很多規律其實最初都來自于不完全歸納法,因此在探究類的知識發生過程中,都可以用不完全歸納法來進行一些規律的猜想。再如類比、反證等方法,也是初中數學常用的方法,運用這些方法的最大好處是,可以讓學生領略到在初中數學中進行邏輯推理的力量與美感. 根據筆者的不完全調查,學生在進行推理后如果能夠成功地解決一個數學難題,其心情是十分喜悅的,而最大的感受就是通過一環套一環的推理,能夠順利地由已知抵達未知。
3.我們常說的數學思想
我國當代數學教育專家鄭毓信、張奠宙等人特別注重數學思想在初中教學中的滲透,多次著文要加強數學思想方法的教學。眾所周知,數學思想與數學哲學有著密不可分的關系,很多數學家本身也是哲學家. 因此,學好數學思想可以有效地培養哲學意識,從而讓學生變得更為聰明。
例如典型的建模思想,其是用數學的符號和語言,將遇到的問題表達成數學表達式,于是就建成了一個數學模型,再通過對模型的分析與計算得到相應的結果,并用結果來解釋實際問題,并接受實際的檢驗. 一旦學生熟悉了這種數學思想并能熟練運用,將是初中數學教學的一個重大成功。
再如化歸思想,其被認為是一種最基本的思維策略,也是一種非?;A、非常有效的數學思維方式. 它是指在分析、解決數學問題時,通過思維的加工及相應的處理方法,將問題變換、轉化為相對簡單的問題,即哲學中以簡馭繁的道理。
在初中數學教學中,思想方法的滲透一般可以分為兩種形式:一是顯性的教學方法,即向學生明確說明方法的名稱,以讓學生熟悉這些方法,并在以后的相關知識學習中能夠熟練運用. 這一思路一般運用在簡單的數學思想方法中;另一個是隱性的教學方法,即在教學中只使用這種方法,但不向學生明確說明方法的名稱,在后面知識的學習中有可能遇到,但總不以方法本身為目的,重點始終集中在某一個問題的解決上.
一、初中數學思想方法教學的重要性
長期以來,傳統的數學教學中,只注重知識的傳授,卻忽視知識形成過程中的數學思想方法的現象非常普遍,它嚴重影響了學生的思維發展和能力培養。隨著教育改革的不斷深入,越來越多的教育工作者,特別是一線的教師們充分認識到:中學數學教學,一方面要傳授數學知識,使學生掌握必備數學基礎知識;另一方面,更要通過數學知識這個載體,挖掘其中蘊含的數學思想方法,更好地理解數學,掌握數學,形成正確的數學觀和一定的數學意識[1]。事實上,單純的知識教學,只顯見于學生知識的積累,是會遺忘甚至于消失的,而方法的掌握,思想的形成,才能使學生受益終生,正所謂“授之以魚,不如授之以漁”。不管他們將來從事什么職業和工作,數學思想方法,作為一種解決問題的思維策略,都將隨時隨地有意無意地發揮作用。
二、初中數學思想方法的主要內容
初中數學中蘊含的數學思想方法很多,最基本最主要的有:轉化的思想方法,數形結合的思想方法,分類討論的思想方法,函數與方程的思想方法等。
(一)轉化的思想方法
轉化的思想方法就是人們將需要解決的問題,通過某種轉化手段,歸結為另一種相對容易解決的或已經有解決方法的問題,從而使原來的問題得到解決。初中數學處處都體現出轉化的思想方法。如化繁為簡、化難為易,化未知為已知等,它是解決問題的一種最基本的思想方法。具體說來,代數式中加法與減法的轉化,乘法與除法的轉化,換元法解方程,幾何中添加輔助線等等,都體現出轉化的思想方法。
(二)數形結合的思想方法
數學是研究現實世界空間形式和數量關系的科學,因而研究總是圍繞著數與形進行的?!皵怠本褪谴鷶凳?、函數、不等式等表達式,“形”就是圖形、圖象、曲線等。數形結合就是抓住數與形之間的本質上的聯系,以形直觀地表達數,以數精確地研究形?!皵禑o形時不直觀,形無數時難入微?!睌敌谓Y合是研究數學問題的重要思想方法[2]。初中數學中,通過數軸,將數與點對應,通過直角坐標系,將函數與圖象對應,用數形結合的思想方法學習了相反數的概念、絕對值的概念,有理數大小比較的法則,研究了函數的性質等,通過形象思維過渡到抽象思維,大大減輕了學習的難度。
(三)分類討論的思想方法
分類討論的思想方法就是根據數學對象本質屬性的共同點和差異點,將數學對象區分為不同種類的思想方法。分類是以比較為基礎的,它能揭示數學對象之間的內在規律,有助于學生總結歸納數學知識,解決數學問題。初中數學從整體上看分為代數、幾何兩大類,采用不同方法進行研究,就是分類思想的體現。具體來說,實數的分類,方程的分類、三角形的分類,函數的分類等,都是分類思想的具體體現。
三、初中數學思想方法的教學規律
數學思想方法蘊含于數學知識之中,又相對超脫于某一個具體的數學知識之外。數學思想方法的教學比單純的數學知識教學困難得多。因為數學思想方法是具體數學知識的本質和內在聯系的反映,具有一定的抽象性和概括性,它強調的是一種意識和觀念。對于初中學生來說,這個年齡段正是由形象思維向抽象的邏輯思維過渡的階段,雖然初步具有了簡單的邏輯思維能力,但是還缺乏主動性和能動性。因此,在數學教學活動中,必須注意數學思想方法的教學規律。
(一)深入鉆研教材,將數學思想方法化隱為顯
首先,教師在備課時,要從數學思想方法的高度深入鉆研教材,數學思想方法既是數學教學設計的核心,同時又是數學教材組織的基礎和起點。通過對概念、公式、定理的研究,對例題、練習的探討,挖掘有關的數學思想方法,了然于胸,將它們由深層次的潛形態轉變為顯形態,由對它們的朦朧感受轉變為明晰、理解和掌握。一方面要明確在每一個具體的數學知識的教學中可以進行哪些思想方法的教學;另一方面,又要明確每一個數學思想方法,可以在哪些知識點中進行滲透。只有在這種前提下,才能加強針對性,有意識地引導學生領悟數學思想方法。
(二)學生主動參與教學,循序漸進形成數學思想方法課堂教學活動中,倡導學生主動參與,重視知識形成的過程,在過程中滲透數學思想方法。
概念教學中,不要簡單地給出定義,要盡可能完整地再現形成定義之前的分析、綜合、比較和概括等思維過程,揭示隱藏其中的思想方法。
定理公式教學中,不要過早地給出結論。要引導學生親自體驗結論的探索、發現和推導過程,弄清每個結論的因果關系,體會其中的思想方法。
在掌握重點,突破難點的教學活動中,要反復向學生滲透數學思想方法。數學教學中的重點,往往就是需要有意識地揭示或運用數學思想方法之處;數學教材中的難點,往往與數學思想方法的更新交替、綜合運用,或跳躍性大等有關。因此,在教學活動中,要適度點撥或明確歸納出所涉及到的數學思想方法。
關鍵詞: 分類思想 數形結合思想 教學效果
自實施課程改革以來,數學教材很多教學內容都安排數學活動幫助學生經歷“數學化”過程,這是新課程標準基本理念的體現。當然,學生的數學活動應當是有層次、逐漸深入的,只有使學生在整個數學活動過程中對數學概念、數學規律的實質產生感悟、反省與建構,才能實現真正意義上的“數學化”過程。但現實教學中教師對學情的分析可能只停留在對學生活動程序、方法掌握情況上,很少能把數學策略方法的有效運用與數學活動經驗進行分析與聯結。
一、運用分類比較,提高學生數學感知能力
分類通常指一種揭示概念外延的邏輯方法,以比較為基礎,按照事物間性質的異同,將相同性質對象歸入一類,不同性質對象歸入不同類別的過程。分類比較活動在數學課堂上經常運用,特別在學生結合舊知進行自主探究時,它能有效架起通向新知學習的橋梁。
針對我班實際情況,本節課教學中我設計了如下一道題:
在等腰ABC中,已知∠A=50°,請求出∠B的度數?
引導學生進行思考討論……
生:答案是50°或者65°。
師:你能說說你是怎么思考的嗎?
生:當∠A是頂角的時候,那么∠B就是底角,所以∠B的度數就是65°.當∠A是底角的時候,∠B是50°。
師:還有沒有其他可能?
同學們認真思考。
生:還有一種可能,當∠A是底角的時候,∠B可能是頂角也可能是底角,所以當∠A是底角的時候,∠B是50°或者80°。
學生經歷了分類討論,加深了對分類討論思想的認識。
對教師來說,這算不上一次得意的教學設計,但學生的反饋卻可以讓我們再次深刻體會到他們是如何充分利用數學思想方法,為學生觀察、分類、比較逐步積累活動經驗,提供理論支撐。
二、活用數形結合,使復雜問題簡單化
數和形是數學研究的兩個基本對象,“數”構成數學的抽象化符號語言,“形”構成數學的直觀化圖形語言。中學數學課堂上,我們常常把“數”和“形”結合起來,使數量描述與空間直觀形象和諧統一,讓學生結合數量關系形象地勾勒出相應的圖形,從而使學生在這一積極的探究活動中積累基本活動經驗,使問題巧妙地解決。
如2008年南京市的一道中考題:一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發,設慢車行駛的時間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數關系.
根據圖像進行以下探究:
信息讀?。?/p>
(1)甲、乙兩地之間的距離為?搖?搖 ?搖?搖km;
(2)請解釋圖中點B的實際意義;
圖像理解:
(3)求慢車和快車的速度;
(4)求線段BC所表示的y與x之間的函數關系式,并寫出自變量x的取值范圍;
學生看不懂題目,圖形看不懂。與我設置此類問題的初衷基本吻合,一是對這類題目“怕”,對文字的閱讀能力偏弱;二是對圖形閱讀不了,不能將圖形與文字結合起來理解。
師:你是如何理解圖中點的實際意義的?
生:我想應該是快車已經到了乙地了。
很顯然,他沒有很好地閱讀題目,導致理解產生偏差。
生:橫軸表示的是兩車行駛的時間,縱軸表示的是快車和慢車之間的距離。
師:看點,時間是4小時,對應的縱軸是0,快車和慢車行駛了4小時后,兩車之間的距離應該是0。
師:什么原因造成了你們理解的錯誤?
……
通過這樣的引導,學生仔細閱讀文字材料與圖形,再配以線段圖輔助解題,學生對這題的理解明顯清晰了很多,很容易得出第三問的解答,為后面幾問的解答做了鋪墊。有了例題的鋪墊,學生的閱讀信心得到了提升,將圖形與文字結合起來理解。
“數形結合”是初中階段一個重要的數學思想方法,結合圖形有助于提高解決問題的能力。
中學生的數學活動經驗是在數學活動中積累,在學生充分經歷數學活動過程中,常常伴隨著多樣數學思想方法,通過這些數學思想方法的有效運用,可以幫助學生感受知識的形成過程,從而獲取具有數學本質的數學活動經驗。在教學中開展一切有現實意義的數學活動,運用多樣數學思想方法,有效促進學生提升數學學習感知力和興趣,為學生學好數學打下堅實的基礎。
參考文獻:
1.數形結合初中數學是一門比較抽象的學科,其包括了空間和數量的關系.數是較為抽象的,而空間是較為直觀,對空間感要求較高.為了幫助學生處理好二者的關系,初中數學教學中可以采用數形結合的數學思想方法,通過數與形相互轉化,幫助學生深化對于數學知識的理解,加深學生的印象,在提高學生數學成績的同時,開闊學生的思維,提高學生處理數學問題的能力,培養學生的空間想象能力.
2.歸納總結初中數學教學在為學生講解新的數學知識的同時,還要注重學生對于已學知識的總結和歸納.在數學知識學習的過程中,總結歸納比之學習新知識更為重要.學生要通過日常的學習,將數學的類型題、不了解的數學知識點、數學的重難點、經常會忽略的數學習題進行歸納總結,有助于幫助學生加深記憶,提高初中數學復習和學習的效率,還能促進教師提高教學的積極性.歸納總結的數學思想方法能夠提高學生的觀察、總結以及創新能力,進一步促進學生的全面發展,提高數學成績.
3.方程函數學生在學習初中數學的過程中,方程思想和函數思想是經常會運用到的.教師要引領學生形成方程和函數的思想,借助方程和函數建立模型,解決數學問題,認識數學的本質,打破傳統,創新思維.方程和函數思想是幫助學生在處理數學重難點問題時利用順向思維進行數學方程和函數的構建,從而解決數學問題,幫助學生充分、全面的觀察數學問題,提高數學成績.
4.分類討論初中數學教學中教師要引領學生形成分類討論的思想方法,深入觀察、探討問題,透過現象看本質,將數學問題進行分類討論.初中數學問題都是有規律而言的,學生通過分類討論不僅能夠提高學生分類、觀察的能力,而且能夠幫助學生形成分類的思考模式,加強學生之間、學生與教師之間的溝通和交流,形成良好的學風,幫助學生在輕松愉快的氛圍中學習數學,提高學習效率.
二、初中數學教學中數學思想的教學方法
1.與時俱進,樹立正確的數學思想方法的意識經濟在發展,時代在進步,初中數學教學中數學思想的教學方法也要進行改革,教師要與時俱進,樹立正確的數學思想方法的意識,提高對于數學思想方法的認識.初中數學教學中數學思想方法、教學模式以及教學方法要根據學生的特點進行調整,樹立正確的教學目標,認識到數學思想方法的重要性,在日常的教學活動中幫助學生樹立數學的思考模式和思想方法.
2.回歸教材,充分并深刻掌握教材的重點知識現在很多的初中學生在學習數學的過程中將精力都用在了研究難度較大,較為復雜的題型,但是這樣并不能提高學生的數學成績.研究書本外的數學知識并不適合大多數的學生,學生研究書本外的知識不僅不能提高數學成績,還會分散學生的精力,造成事倍功半的情況.初中數學教材都是國家根據學生的特點、學生的實際情況由眾多的教育專家、資深數學教師編纂而成,是最為適合初中學生進行數學學習,掌握數學知識的.所以,初中數學教師要引導學生回歸教材,充分并深刻的分析、掌握教材的重點、難點知識.學生只有回歸教材,研究教材中的重點、難點,才能不脫離實際,符合新課程改革的要求,提高數學成績.
1.數形結合初中數學是一門比較抽象的學科,其包括了空間和數量的關系.數是較為抽象的,而空間是較為直觀,對空間感要求較高.為了幫助學生處理好二者的關系,初中數學教學中可以采用數形結合的數學思想方法,通過數與形相互轉化,幫助學生深化對于數學知識的理解,加深學生的印象,在提高學生數學成績的同時,開闊學生的思維,提高學生處理數學問題的能力,培養學生的空間想象能力.
2.歸納總結初中數學教學在為學生講解新的數學知識的同時,還要注重學生對于已學知識的總結和歸納.在數學知識學習的過程中,總結歸納比之學習新知識更為重要.學生要通過日常的學習,將數學的類型題、不了解的數學知識點、數學的重難點、經常會忽略的數學習題進行歸納總結,有助于幫助學生加深記憶,提高初中數學復習和學習的效率,還能促進教師提高教學的積極性.歸納總結的數學思想方法能夠提高學生的觀察、總結以及創新能力,進一步促進學生的全面發展,提高數學成績.
3.方程函數學生在學習初中數學的過程中,方程思想和函數思想是經常會運用到的.教師要引領學生形成方程和函數的思想,借助方程和函數建立模型,解決數學問題,認識數學的本質,打破傳統,創新思維.方程和函數思想是幫助學生在處理數學重難點問題時利用順向思維進行數學方程和函數的構建,從而解決數學問題,幫助學生充分、全面的觀察數學問題,提高數學成績.
4.分類討論初中數學教學中教師要引領學生形成分類討論的思想方法,深入觀察、探討問題,透過現象看本質,將數學問題進行分類討論.初中數學問題都是有規律而言的,學生通過分類討論不僅能夠提高學生分類、觀察的能力,而且能夠幫助學生形成分類的思考模式,加強學生之間、學生與教師之間的溝通和交流,形成良好的學風,幫助學生在輕松愉快的氛圍中學習數學,提高學習效率.
二、初中數學教學中數學思想的教學方法
1.與時俱進,樹立正確的數學思想方法的意識經濟在發展,時代在進步,初中數學教學中數學思想的教學方法也要進行改革,教師要與時俱進,樹立正確的數學思想方法的意識,提高對于數學思想方法的認識.初中數學教學中數學思想方法、教學模式以及教學方法要根據學生的特點進行調整,樹立正確的教學目標,認識到數學思想方法的重要性,在日常的教學活動中幫助學生樹立數學的思考模式和思想方法.
2.回歸教材,充分并深刻掌握教材的重點知識現在很多的初中學生在學習數學的過程中將精力都用在了研究難度較大,較為復雜的題型,但是這樣并不能提高學生的數學成績.研究書本外的數學知識并不適合大多數的學生,學生研究書本外的知識不僅不能提高數學成績,還會分散學生的精力,造成事倍功半的情況.初中數學教材都是國家根據學生的特點、學生的實際情況由眾多的教育專家、資深數學教師編纂而成,是最為適合初中學生進行數學學習,掌握數學知識的.所以,初中數學教師要引導學生回歸教材,充分并深刻的分析、掌握教材的重點、難點知識.學生只有回歸教材,研究教材中的重點、難點,才能不脫離實際,符合新課程改革的要求,提高數學成績.